STD Awareness: The Latest on Gonorrhea

Neisseria gonorrhoeae, the bacterium that gangs up on your body to give it gonorrhea. Image: CDC

Gonorrhea is that guy with the funny name who’s always up to something new and mischievous. Last year, the New England Journal of Medicine declared that it’s “time to sound the alarm” in response to emerging strains of gonorrhea that are increasingly resistant to antibiotics. Then, earlier this year, the medical journal JAMA reported the first North American sightings of gonorrhea that failed treatment with cefixime, one of the last drugs we have in our anti-gonorrhea arsenal. It’s a great time to be a gonococcus — the type of bacteria that causes gonorrhea — but the humans they infect probably don’t see it that way.

Last month, this bad boy rose to the top of the Most Wanted list when the Centers for Disease Control and Prevention proclaimed antibiotic-resistant gonorrhea an “urgent threat” — the highest threat level, which gonococci share with only two other bacteria types. To give you some context, the much more famous superbug MRSA was categorized as a “serious” threat, one notch below “urgent.”


Antibiotic-resistant gonorrhea is an “urgent” threat; meanwhile, researchers develop a gonorrhea vaccine that works — on mice.


Antibiotic-resistant gonorrhea is especially insidious for two reasons. One, gonorrhea often doesn’t have symptoms, which allows it to jump from one sexual partner to another, the hosts often none the wiser. Two, unless health care providers actually test the bug’s DNA, they have no way of knowing whether or not they’re dealing with a drug-resistant strain. This opens up the possibility for treatment failure — and for the antibiotic-resistant bacteria to be further propagated into the community.

The CDC estimates that the United States sees 246,000 cases of antibiotic-resistant gonorrhea infections annually — that’s about 30 percent of all gonorrhea infections in the country. For now, we seem to be able to cure them with higher doses or different combinations of drugs. So why does antibiotic-resistant gonorrhea deserve the “urgent” designation? While gonorrhea isn’t associated with a body count — unlike other drug-resistant pathogens, which collectively kill at least 23,000 Americans a year — it can have terrible consequences. Gonorrhea can cause pelvic inflammatory disease (PID) when it advances up the female reproductive tract, and epididymitis when it invades the male reproductive tract; both conditions can cause infertility. Also, gonorrhea infections make us more vulnerable to HIV. The CDC estimates that if the most resistant gonorrhea strain gains ground over the next decade, the country could see an additional 75,000 cases of PID, 15,000 cases of epididymitis, and 222 HIV infections, costing us $235 million. Continue reading

Over 90 Percent of What Planned Parenthood Does, Part 16: Blood Tests to Screen for Ovarian Cancer

repro systemWelcome to the latest installment of “Over 90 Percent of What Planned Parenthood Does,” a series on Planned Parenthood Advocates of Arizona’s blog that highlights Planned Parenthood’s diverse array of services — the ones Jon Kyl never knew about.


September is Ovarian Cancer Awareness Month.


Ovarian cancer can strike anyone with ovaries, although it is most common in people who are more than 55 years old. It starts when certain mutations in ovarian cells start to proliferate, resulting in tumor growth. (Some types of ovarian cancer can originate in the fallopian tubes, but most ovarian cancers arise from the cells that cover the surface of the ovary.) If a cancerous cell breaks away, it might set up camp elsewhere in the body, resulting in the cancer’s spread. It can be a serious condition, affecting around one out of 71 ovary-wielding individuals.

What causes ovarian cancer?

If you learned about the reproductive system in school, you probably remember that ovulation involves the release of an egg from an ovary. What your teacher probably didn’t tell you is that the process of ovulation is actually rather violent. An egg does not exit the ovary through a preexisting “doorway” and shuttle down the fallopian tube to make its way to the uterus. Nope, when an egg is “released,” it actually bursts through the ovary itself.

OH YEAHUnfortunately, during ovulation, the egg perforates the ovary, creating a lot of tissue damage. The ovary needs to repair itself, sort of like how bricklayers will need to be hired to fix that mess left by the Kool Aid man. Because ovarian cells are so often replicating themselves during the repair process, there are more chances for an error to occur. Cells that divide frequently, like ovarian cells, are more prone to becoming cancerous. Continue reading

STD Awareness: An Update on Antibiotic-Resistant Gonorrhea

Last year, we shared the fascinating and frightening story of the emergence of increasingly antibiotic-resistant gonorrhea, an STD caused by the gonococci bacteria. The sexually transmitted scourge, which we only so recently reined in with the development of antibiotics, has been performing some genetic gymnastics to defeat almost every drug we’ve thrown at it. We douse it with certain drugs, and the bacterium literally spits them back out at us, and it inactivates other drugs by snapping the active molecules in half. Sulfa drugs, penicillins, tetracyclines, fluoroquinolones — they all make a gonococcus heave a bored sigh. Luckily, cephalosporins were still an effective treatment, but recently there have been reports of stubborn gonorrhea infections caused by the latest and greatest (and some might say most hated) strain of gonococci.


The bacteria that cause gonorrhea continue to evolve, right under our noses!


Well, the story isn’t over — just like the bacteria that cause gonorrhea, the tale is rapidly evolving. The latest class of antibiotics that the gonococci are chipping away at is the cephalosporin family, which includes several chemically related drugs that work in similar ways — and that can likewise be defeated by microbes in similar ways. Cephalosporin-resistant gonorrhea was first reported in Japan and documented in a few European countries. The Japanese case that inspired the New England Journal of Medicine to declare last year that it was “time to sound the alarm” was an oral gonorrhea infection that was resistant to one member of the cephalosporin family: ceftriaxone.

Earlier this month, the prestigious medical journal JAMA reported the first North American sightings of gonorrhea that failed treatment with another cephalosporin: cefixime. Yeah, I know, you’d rather hear about Big Foot or UFO sightings, not evidence that something as real and unmythical as Gonorrhea 5.0 has landed in your back yard. Luckily, there’s plenty you can do to protect yourself from it, and we’ll tell you all about it toward the end of this article. (Spoiler alert: It involves using condoms!) Continue reading

STD Awareness: Antibiotic-Resistant Syphilis

Treponema pallidum under a microscope. Image: Dr. Edwin P. Ewing, Jr., CDC

The image to your right, with lively yellow splotches against a pale green background, is not a long-lost Jackson Pollack piece, and the dark squiggly lines aren’t strands of paint haphazardly splattered onto a canvas. In fact, those squiggly lines are magnified images of the spiral-shaped bacteria species Treponema pallidum. You might not have heard of T. pallidum, but you’ve probably heard of syphilis, the sexually transmitted disease (STD) that these bacteria cause. While syphilis isn’t as common as other STDs, like chlamydia and HPV, it’s still out there, and occasionally communities experience outbreaks. It’s always best for sexually active people to be screened for STDs and practice safer sex.


The evolution of syphilis strains that are resistant to certain antibiotics underscores the need to use antibiotics properly.


Syphilis can inflict serious long-term damage — in fact, before the introduction of antibiotics, syphilis was the worst STD out there! Known as the Great Pox when it descended upon Europe 500 years ago, it could cause large and painful boils. Eventually, natural selection led to T. pallidum’s evolution into a form with milder symptoms, which benefited the bacteria by enabling its less boil-ridden (and presumably more attractive) human hosts to spread it farther and wider. Nevertheless, the symptoms of syphilis, if present, still include infectious sores, and when the disease goes untreated, it can cause severe, possibly fatal, damage to the nervous system.

Back in the day, there were myriad inadequate “treatments” for syphilis, ranging from straight-up quackery to the use of partially effective but toxic chemicals such as mercury. But a century ago, in 1912, a new arsenic-based chemical called Neosalvarsan was hailed as a “magic bullet.” Unfortunately, this treatment took weeks or even more than a year to administer — and had dangerous side effects. Quack treatments continued to flourish, and it wasn’t until the widespread adoption of penicillin in the 1940s that an effective cure with few side effects was available.

But natural selection endures; in fact, by flooding T. pallidum’s habitat with certain antibiotics, we’ve created an environment that favors the organism’s evolution against us. While not as immediately threatening as antibiotic-resistant gonorrhea, syphilis has been quietly evolving resistance to some of the antibiotics we use to treat it. This underscores the importance of using antibiotics correctly and emphasizing safer-sex practices, such as using latex condoms during vaginal or anal intercourse and during oral contact with a penis. Continue reading

Over 90 Percent of What Planned Parenthood Does, Part 10: Diabetes Screening

from http://diabetes.niddk.nih.gov/about/dateline/win11/5.aspxWelcome to the latest installment of “Over 90 Percent of What Planned Parenthood Does,” a series on Planned Parenthood Advocates of Arizona’s blog that highlights Planned Parenthood’s diverse array of services — the ones Jon Kyl doesn’t know about.

November is National Diabetes Month. Diabetes is a serious chronic disease — and at Planned Parenthood Arizona, we can screen you for diabetes and help you get necessary treatment if you are diagnosed with it. The American Diabetes Association recommends screening for anyone more than 45 years of age, as well as younger people who have risk factors.


At Planned Parenthood, we can screen you for diabetes; at home, you can take steps to prevent it.


What Is Diabetes?

The human body creates glucose (a type of sugar) from our food, which it breaks down into tiny molecules. Insulin, a hormone that is created in the pancreas, enters the bloodstream and enables glucose to enter our body’s cells — which use glucose as fuel. Diabetes occurs when blood glucose becomes too high and the body is unable to regulate it; this lack of regulation results in damaged tissues, leading to long-term health concerns.

There are two types of diabetes: Type 1 diabetes, which is characterized by the pancreas’ inability to produce enough insulin; and Type 2 diabetes, in which the pancreas can continue to produce insulin, but the body’s cells aren’t able to utilize it. Those with Type 1 diabetes commonly encounter issues with frequent urination, increased thirst and hunger, weight loss, extreme fatigue, and blurred vision. Individuals with Type 2 diabetes may experience any of those symptoms, as well as slow-healing cuts and bruises, frequent infections, and areas of darkened skin. Heart disease is also a serious concern; an individual with diabetes has more than twice the chance of a heart attack. While some people with Type 2 diabetes experience no apparent symptoms, it can result in death if the disorder is not monitored and controlled effectively. Continue reading

STD Awareness: Antibiotic-Resistant Gonorrhea

Under the microscope, Neisseria gonorrhoeae infects larger human cells (click to enlarge). The bacteria resemble tiny pairs of coffee beans. Image: Dr. Norman Jacobs, CDC



Writing about sexually transmitted diseases (STDs), one must walk the line between warning readers of risks and engaging in full-fledged alarmism. So it’s a bit disconcerting that researchers writing in the New England Journal of Medicine last month declared that it’s “time to sound the alarm”: The emergence of completely antibiotic-resistant gonorrhea is becoming more of a realistic threat and less of a theoretical possibility. The bacteria that cause gonorrhea are evolving faster than we can develop effective antibiotics against them, and a return to the era of untreatable gonorrhea could see a rise in the particularly nasty complications that arise from a long-term gonorrheal infection, such as pelvic inflammatory disease and epididymitis.

Las bacterias causantes de gonorrea se desarrollan más rápido de lo que podemos desarrollar antibióticos eficaces contra ellas. También pueden afectar negativamente a los hombres. Para evitarlo y mejorar la erección masculina, es necesario comprar medicamentos en este sitio web https://zveza-kds.si/content/cialis-generico.


There are genes that confer resistance to every single antibiotic we use to cure gonorrhea. If they all combine within one organism, we might have a superbug on our hands.


Neisseria gonorrhoeae is a species of tricky bacteria that cause gonorrhea, which can infect the mouth, throat, rectum, urethra, cervix, and even eyes. These bacteria have vexed us for thousands of years, having evolved many strategies for entrenching themselves in our bodies. They can alter the proteins that adorn their surfaces, rendering our immune systems incapable of recognizing them. They can form colonies in which they work together to manipulate our cell surfaces with their retracting appendages until they’re allowed entry inside, where they can surreptitiously multiply.

You’ve probably heard of MRSA, which is pronounced “mersa” and stands for methicillin-resistant Staphylococcus aureus — a strain of bacteria that has acquired resistance to methicillin, as well as pretty much every other antibiotic to boot. MRSA is an example of evolution by natural selection — what didn’t kill its ancestors made them stronger, spawning a drug-resistant strain.

Why are we talking about MRSA in a post about STDs? It’s not just because MRSA has apparently found a way to be transmitted sexually, but also because it helps make the concept of antibiotic-resistant gonorrhea more accessible. It wasn’t until less than a century ago that we finally developed a magic-bullet treatment for gonorrhea, and for a handful of decades it was quickly and easily treated with a dose of penicillin. Enter evolution by natural selection. Continue reading

STD Awareness: The Future of Treatment for HIV/AIDS

This scanning electron micrograph shows HIV particles (colored yellow) infecting a human T cell. Image: National Institute of Allergy and Infectious Diseases, National Institutes of Health

This scanning electron micrograph shows HIV particles (colored yellow) infecting a human T cell. Image: National Institute of Allergy and Infectious Diseases, National Institutes of Health

In 2006, an HIV-positive man was diagnosed with leukemia. First he received chemotherapy, and when the cancer returned his doctor recommended a stem-cell transplant with tissues obtained from a bone-marrow donor. After finding an unusually high number of compatible donors, his doctor, Gero Hütter, had a simple idea that would change the course of HIV research. Dr. Hütter knew of a rare genetic mutation that confers immunity to many strains of HIV, including the strain that infected his cancer patient. And new blood cells, including immune cells, are manufactured by bone marrow. What if he could find a bone-marrow donor with this mutation? What effect would it have on the HIV infection?

Five years after his cancer diagnosis, the man, known as the Berlin patient and recently identified as Timothy Ray Brown, is in remission from cancer … and the most sensitive tests have been unable to detect HIV anywhere in his body, despite the discontinuation of antiretroviral drugs. Scientists are a cautious lot, careful not to make grand statements without qualifying them with words like “seem” and “suggest.” But more and more, researchers are starting to say that Brown could be the first case in which a cure for HIV was attained.

Human immunodeficiency virus, or HIV, has been the focus of intense research since the 1980s, when it was identified as the causative agent of AIDS. Many anti-HIV drugs have been developed since then, though worldwide, less than a third of people who need the drugs have access to them. Those with access, however, have significantly improved health outcomes and longer life expectancy. Continue reading